AOS341 Quantitative Methods
Credits (ECTS):5
Course responsible:Dag Einar Sommervoll
Campus / Online:Taught campus Ås
Teaching language:Norsk
Course frequency:Annually
Nominal workload:125 work hours.
Teaching and exam period:This course starts in Autumn parallel. This course has teaching/evaluation in Autumn parallel, .
About this course
The course is a method course aimed at students who wish to collect / use quantitative data in connection with the master's thesis and further analysis work. A main focus is basic quantitative analysis and applications, not mathematical and theoretical understanding. The course is recommended as preparation for the master's thesis. There is also a high demand in the world of work for data analysis skills. Central topics are data collection, data washing and descriptive analysis. Analysis of data, including regression and hypothesis testing forms a core part of the course.
Course participants will learn the production of data and be able to set up regression models and test sensitivity of model and results. Emphasis will also be placed on the workflow in a quantitative analysis, from formulating research questions to data collection and finally assessing the validity of the results, with an eye to conducting their own analyzes. It is both simple training to use R, but it will also be possible to use only Excel (new from last year). The course emphasizes work on specific cases and data sets.
Learning outcome
After completing the course, students are expected to have acquired the following knowledge, skills and general competence:
Knowledge:
The student should
- have basic knowledge about the organization and use of data
- have knowledge of the design and conduct of surveys and experiments
- have knowledge of descriptive analysis and co-variation
- have knowledge of hypothesis testing and regression
- have knowledge of the requirements for causal explanations in the social sciences
- have knowledge of model sensitivity and validation
Skills:
The student should
- be able to define research questions and testable hypotheses
- be able to collect and organize own data for analysis
- be able to present and visualize data - be able to estimate regression models and interpret results
- be able to analyze and perform robustness analyzes on data
General competence:
The student should
- be able to obtain relevant quantitative answers to academic problems through the use of different quantitative methods
- be able to conduct data collection using surveys and / or secondary data sources for a master's thesis or equivalent analysis with a high scientific standard
- be able to critically evaluate the performance and results of a quantitative survey
Learning activities
Teaching support
Prerequisites
Recommended prerequisites
Assessment method
Examiner scheme
Mandatory activity
Notes
Teaching hours
Admission requirements